
Hierarchical Solution of Markov Decision Processes using Macro-actions

Milos Hauskrecht, Nicolas Meuleau
Leslie Pack Kaelbling, Thomas Dean

Computer Science Department, Box 1910
Brown University, Providence, RI 02912�

milos, nm, lpk, tld � @cs.brown.edu

Craig Boutilier
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, Canada
cebly@cs.ubc.ca

Abstract

We investigate the use of temporally abstract
actions, or macro-actions, in the solution of
Markov decision processes. Unlike current mod-
els that combine both primitive actions and
macro-actions and leave the state space un-
changed, we propose a hierarchical model (using
an abstract MDP) that works with macro-actions
only, and that significantly reduces the size of the
state space. This is achieved by treating macro-
actions as local policies that act in certain regions
of state space, and by restricting states in the ab-
stract MDP to those at the boundaries of regions.
The abstract MDP approximates the original and
can be solved more efficiently. We discuss sev-
eral ways in which macro-actions can be gen-
erated to ensure good solution quality. Finally,
we consider ways in which macro-actions can be
reused to solve multiple, related MDPs; and we
show that this can justify the computational over-
head of macro-action generation.

1 Introduction

Markov decision processes (MDPs) [11, 22] have proven
tremendously useful as models of stochastic planning and
decision problems. However, traditional dynamic pro-
gramming remains computationally intractable for practi-
cal problems, requiring time polynomial in the size of the
state and action spaces, but where these spaces are gener-
ally too large to be explicitly enumerated. Considerable
research has been directed toward the solution of Markov
decision processes (MDPs) with large state and action
spaces. These include function approximation [2], reach-
ability analyses [5] and aggregation techniques [7, 3, 4].

Despite these advances, little attention has been paid to the
reuse of policies or value functions generated for one MDP
in the solution of a related MDP. While such reasoning is

common in classical planning—for instance, through the
use of macros [8, 16, 13] or plan repair strategies [15]—its
application in stochastic settings is less common. Suitable
techniques of this type could lead to the amortization of
solution costs over a large number of problems, and the
ability to solve future problem instances quickly, which is
critical to on-line reasoning.

One of the few models to deal with solution reuse within
the MDP framework is the Skills model of Thrun and
Schwartz [24], which attempts to learn how to reuse policy
fragments (or skills) for different tasks. Another is found
in the work of Sutton and his colleagues [23, 20, 21], who
have developed models of macro-actions for MDPs that
can be reused to solve multiple MDPs when objectives (or
goals) change. In particular, macros are viewed as “local”
policies that are implemented until some termination con-
dition is met, at which point a new macro (or any other ac-
tion) can be applied. Key to the success of this framework
is the ability to construct models of macro-actions that al-
low them to be treated as if they were ordinary actions in
the original MDP.

In this paper, we continue the investigation of the use of
macros in MDPs; specifically, we focus on the problem of
planning with macro-actions addressed by Precup, Sutton
and Singh [21]. Our main aim is the development of a dif-
ferent model for planning with macros that deals with some
of the computational problems associated with this earlier
model (the PSS model). In particular, while the PSS model
allows macros designed for one MDP to be applied to a re-
lated MDP, it still relies on explicit dynamic programming
over the state space of the related MDP (and a larger ac-
tion space). Thus it does nothing to alleviate the problem
of large state spaces. Furthermore, the use of macros is not
guaranteed to reduce the time required to find an optimal
solution.

We present in Section 2 a hierarchical model for the use of
macro-actions that specifically addresses the difficulties of
large state and action spaces. We take a macro to be a local
policy, defined over a region of state space, that terminates
when that region is left. We show how an abstract MDP

can be constructed that consists only of states that lie on the
borders of adjacent regions, and whose solution determines
a policy that consists of macros only. Hierarchical models
similar to the one we propose have been investigated by
Forestier and Varaiya [9], and recently by Parr [18, 19].

Two limitations of this model are then addressed. The first
relates to solution quality. Since the policy generated by
solving the abstract MDP can contain only macros, certain
behaviors cannot be realized, thus the resulting policy may
be suboptimal. In Section 3, we identify conditions un-
der which the set of macros that comprise the action space
of the abstract MDP give rise to an � -optimal policy for
the original MDP. We then consider both systematic and
heuristic techniques for macro generation that ensure high
quality behavior.

The second limitation relates to solution time, specifically
the time needed to generate a set of good macros. This
generally requires that we perform some form of dynamic
programming within specific regions of the state space.
Since our regions cover the state space and macros should
capture a variety of control behaviors in different regions,
macro generation can become computationally more inten-
sive than solving the original MDP.1 This problem can be
diminished if we can generate macros off-line for fast on-
line reasoning, or reuse them to solve multiple problems. In
Section 4, we briefly analyze the requirements for feasible
macro reuse and describe a hybrid model in which changes
in the original MDP (either in the reward function or the
system dynamics) lead to an expansion of some parts of
the abstract MDP, which can then be solved. Since this hy-
brid MDP consists primarily of abstract states and macro-
actions, it can be solved effectively and provide for fast,
on-line response to changes in problem specification. The
use of macros for the on-line solution of multiple related
MDPs is the main advantage of our hierarchical model.

2 A Hierarchical Model of Macro-actions

2.1 Markov Decision Processes

A (finite) Markov decision process is a tuple
����������	
����

where:
�

is a finite set of states;
�

is a finite set of actions;	
is a transition distribution

	����������������������!
, such

that
	#"%$&��'(�*),+

is a probability distribution over
�

for any$.-/�
and

'�-0�
; and

�1�2�3���4�
IR is a bounded

reward function. Intuitively,
	#"5$��!'(�768+

denotes the proba-
bility of moving to state

6
when action

'
is performed at

state
$
, while

�9"%$&�!':+
is the immediate reward associated

with action
'

in
$
.

Given an MDP, the objective is to construct a policy that
maximizes expected accumulated reward over some hori-

1We note that aggregation and approximation techniques can
be used within a region, though we do not address this issue here.

zon of interest. We focus on infinite horizon, discounted
decision problems, where we adopt a policy that maximizes; "5<>=?%@(A�B ?)DC ? + , where

C ?
is a reward obtained at time E and��F B F��

is a discount factor. In such a setting, we restrict
our attention to stationary policies of the form G �H���I�

,
with G "%$*+ denoting the action to be executed in state

$
. The

value of a policy G can be shown to satisfy [11]

JHK "%$*+ML��9"%$&� G "5$N+O+QP B9R?TS&U
	#"5$�� G "%$*+!� E +V) JHK " E +!W

A policy G is optimal if
J K "5$N+YX J K�Z "%$*+

for all
$[-\�

and policies G^] . The optimal value function
J`_

is the value
function for any optimal policy.

A number of techniques for constructing optimal policies
exist. An especially simple algorithm is value iteration [1].
We produce a sequence of value functions

Jba
by starting

from an arbitrary
J A

, and defining

Jdcfe�g "%$*+ML[hjilkm S�n ���9"%$&��'H+oP B R?TS&U
	#"5$��!'(� E +�) Jdc " E + � W (1)

The sequence of functions
J c

converges to
J�_

in the limit.
Each iteration is known as a Bellman backup. After some
finite number p of iterations, the choice of maximizing ac-
tion for each

$
forms an optimal policy G and

Jba
approxi-

mates its value.

2.2 Macro-actions and their Models

Sutton [23] has argued that it is crucial to be able to model
MDPs at multiple time scales. The ability to determine
the value—within an underlying MDP—of a complex se-
quence of actions or program is important in, say for ex-
ample, robot programming. In the navigation problem
illustrated in Figure 1(a), a programmer may have provided
a program (or partial policy) that enables the robot to exit
one of the rooms through a particular door. Integrating such
a partial policy into the decision process is a difficult task
given that: (a) the robot usually “commits” to the execution
of this program; and (b) the program extends over some
period of time. To deal with this problem, Precup, Sutton
and Singh [23, 20, 21] have developed multi-time models
and applied them to planning with MDPs. In what fol-
lows, we draw heavily on the use of these multi-time mod-
els. Parr and Russell [17] have proposed a related model in
which a (partial) policy is modeled using a finite-state ma-
chine. These policies are then “abstracted” hierarchically
and treated as primitive actions to be invoked by higher-
level behaviors.

While such temporally abstract actions, or macro-actions,
are useful for modeling constrained behavior—such as par-
tially specified policies—we also view them as a useful tool
that allows the reuse of a solution generated for one MDP
in the solution of another. However, this perspective casts

G

a. b.

Figure 1: (a) Test problem Maze 121. Shaded squares de-
note locations with higher cost, patterned squares represent
areas in which moves are more uncertain (a move in the
intended direction is less likely). Shaded circles denote ab-
sorbing states with a finite positive cost, G stands for a zero
cost goal state; (b) peripheral states for the partitioning into
11 rooms (regions).

macros in a very different light. While Sutton and his col-
leagues have not explicitly considered how macros arise,
we focus on the issues associated with the automatic gen-
eration of macro actions. Rather than supposing a tempo-
rally abstract behavior has been provided, we imagine that
the decision maker will be forced to deal with a number
of related problem-solving episodes, and desires a set of
macros that will help solve these MDPs more quickly. Thus
the effort required to generate these macros (something not
considered in the PSS model) will “pay for itself” either
with decreased reaction time to changing circumstances, or
with total computational savings over multiple problem in-
stances. The Skills model of Thrun and Schwartz [24] has
a similar motivation, though they do not address the use of
multi-time models for learned skills. Parr [18, 19] has inde-
pendently investigated the use of hierarchical models with
an eye toward macro generation, and has considered many
of the same problems we address here.

Formally, our model relies on a region-based decomposi-
tion of a given MDP

� ���!�#�!	
�7��
as defined by Dean and

Lin [6].

Definition 1 A region-based decomposition
�

of an MDP� L ����������	
���b
is a partitioning

� L � � g �N)*)N)!��� a � of
the state space

�
. We call the elements

� c of
�

the regions
of
�

. For any region
� c , the exit periphery of

� c is

XPer
"%� c +ML � E -����d� c � 	#"%$&��'(� E +�� � for some

'(�7$8- � c � W
The entrance periphery of

� c is

EPer
"%� c +ML � E -�� c � 	#"%$&��'(� E +�� � for some

'(�7$8-����d� c � W
We call elements of XPer

"%� c + exit states for
� c and elements

of EPer
"%� c + entrance states. The collection of all peripheral

states is denoted

Per � "5� +
L	� c �
EPer

"%� c +
��
� p � L	� c �
XPer

"5� c +
��
� p � W

Figure 1(b) shows the set of peripheral states obtained if we
partition the problem of Figure 1(a) into the eleven regions
corresponding to different rooms.

A macro-action is simply a local policy defined for a par-
ticular region

� c . Intuitively, this policy can be executed
whenever an agent is in the region and terminates when the
agent leaves the region (if ever).

Definition 2 A macro-action for region
� c is a local policyG c ��� c �I�

.

Our definition is much more specific than that of PSS,
who define macros using arbitrary starting and termination
conditions, and allow mappings that depend on the time
elapsed or the trajectory followed since the macro action
was initiated. Within our framework, the starting condition
for macro G c would simply be

$? ->� c (we are in the re-
gion) and the termination condition would be

$?��- � c (we
are out of the region).

A key insight of PSS (which finds its roots in earlier work
by Sutton [23]) is that one can treat a macro-action of this
type as a primitive action in the original MDP if one has
an appropriate reward and transition model for the macro.
They propose the following method of modeling macros.

Definition 3 A discounted transition model
	 c "�) � G c �N) + for

macro G c (defined on region
� c) is a mapping

	 c �2� c �
XPer

"%� c +M���������!
such that	 c "5$�� G c ��$] + L ;�� " B ��� g)����"%$ � L>$]�� $ A L $�� G c +O+!�

L =R ?%@ g B
? � g)�������9L E �7$? L�$] � $ A L>$&� G c��

where the expectation is taken with respect to time
�

of ter-
mination of G c . A discounted reward model

� c "�) � G c + for G c
is a mapping

� c ��� c � IR s.t.

� c "5$�� G c +ML ; � "
�
R ?%@(A B

? �9"%$? � G c "5$? +O+ � $ A L�$�� G c +!�
where the expectation is taken with respect to completion
time

�
of G c .

The discounted transition model is a standard stochastic
transition matrix specifying the probability of leaving

� c
via a specific exit state given that G c was initiated at a spe-
cific state inside the region, with one exception: the proba-
bility is discounted according to the expected time at which
that exit occurs. As demonstrated by PSS, this clever addi-
tion allows the transition model to be used as a normal tran-
sition matrix in any standard MDP solution technique, such
as policy or value iteration. 2 The discounted reward model
is similar, simply measuring the expected accrued reward
during execution of G c starting from a particular state in

� c .
2Our definition of the discounted transition model differs

slightly from that of PSS: their transition model is obtained by

2.3 Constructing Macro Models

Since we are concerned with the automatic generation of
macros, we now consider the construction of discounted
transition and reward models for macros. Issues related to
the macro-model construction are discussed also in [19].

Let G c be a macro defined on
� c . The discounted tran-

sition probability
	 c "%$&� G c ��$] + for

$ - � c , macro G c and$] - ����� C�"5� c + satisfies:	 c "5$�� G c ��$] +ML	#"5$�� G c "%$*+!��$] +oP B R
� Z Z SlU��

	#"%$&� G c "5$N+7�7$]�] +�	 c "5$]�] � G c �7$] +7W

This leads to � ����� C�"%� c + � systems of linear equations, one
set for every exit state. Each system consists of � � c � equa-
tions with � � c � unknowns. The systems can be solved either
directly or using iterative methods. Thus, the time com-
plexity of finding all transition probability parameters is� " � ����� C�"%� c + � � � c � 	 + .
We can construct the reward model in a similar fashion. Let� c "%$&� G c + be the expected discounted reward for following
the policy G c starting at state

$�-�� c . Then we have:

� c "%$&� G c +ML �9"%$&� G c "%$*+ +*P B R
� Z SlU��

	#"%$&� G c "5$N+7�7$] +O� c "%$] � G c +!W

This defines a set of � � c � linear equations, which can be
solved in

� " � � c � 	 + time.

Overall, the computation of macro parameters takes� "O" � ����� C�"5� c + � P �N+ � � c � 	 + time per macro. Note that an
overhead for generating macros (finding suitable policies
defining macros and computing their parameters) may be-
come, in many instances, computationally more expensive
than solving the original MDP problem. Thus we must
carefully consider what kinds of planning situations justify
the computational effort.

2.4 The Hierarchical Solution of MDPs with Macros

Suppose we are given an MDP
�

, a decomposition
�

, and
a set of macros

� c L � G gc �*)N)*)!� G a �c � for each region
� c

associated with this partition. There are two reasonably
direct ways in which these can be used to solve

�
more

efficiently.

First, we can simply add these macro-actions to
�

; let� m denote the augmented MDP constructed by extending
the action space from

�
to
� ��� g �)*)N)���� a , assuming

that macro models are used to determine transitions and re-
wards associated with these new actions.

� m can be solved

multiplying our variable
�� by the constant . Our definition is
consistent with the update formula in Equation 1, while PSS use
a formula where the discount factor is folded into the transition
model (this requires multiplying the one-step transition probabil-
ities by before using them).

by standard methods, such as value iteration. Because all
base level actions (those in

�
) are present, the policy so

constructed is guaranteed to be optimal. Furthermore, the
presence of macros can enhance the convergence of value
iteration, as demonstrated by Sutton et al. [20, 21]. This
is due to the fact that the single “application” of a macro
can propagate values through a large number of states and
over a large period of time in a single step. In general, this
model requires more work per iteration because of the in-
creased action space, but potentially fewer iterations. We
note that this savings does not account for the overhead as-
sociated with generating macros and constructing the mod-
els for each macro.

We also note that, depending on the initial value function
used to begin value iteration, macros can actually increase
the number of steps required for convergence compared to
the value iteration with primitive actions alone. Specifi-
cally, Hauskrecht [10] showed that if

J A
is an upper bound

on the optimal value function
J`_

, value iteration in the aug-
mented MDP is guaranteed to require at least as many iter-
ations as in the original MDP (the same holds for a lower
bound and minimization of costs). An empirical demon-
stration of this phenomenon is provided in next section.

Alternatively, we can imagine a reduced MDP,
���

, formed
by replacing

�
with

� g �)*)*) ��� a .
���

will generally be
more efficiently solvable because there are fewer actions
to consider, and convergence will be enhanced as above.
However, because the possible behaviors one can consider
are limited to the application of these macros, there is no
guarantee that the resulting solution is optimal: this will
depend crucially on the macros introduced.

While these models offer some advantages, they do not use
macros to alleviate the problem of state space size. Each
method requires explicit value iteration over the state space,
with possibly a larger number of actions. We instead wish
to solve a much smaller MDP, taking advantage of the fact
that, by committing to the execution of a macro, decisions
need only be made at peripheral states, not at states that
lie strictly within a region. To capture this intuition, we
consider the hierarchical application of macro operators
within a high-level, or abstract, MDP. This model is closely
related to the “landmark” technique developed by Kael-
bling [12] for learning policies for hierarchical stochastic
shortest path problems.

Definition 4 Let
� L � � g �*)*)N)!��� a � be a decomposition of

MDP
� L\����������	
����

, and let � L �*� c �
 � p � be a
collection of macro-action sets, where

� c L � G gc �*)*)N)!� G a �c �
is a set of macros for region

� c . The abstract MDP
�] L� �] �!�] ��] �7�] induced by

�
and � , is given by:

� �] L ��� C � "%�V+
L � �
EPer

"5� c +2��
� p � ;

� �] L � c � c with G��c - � c feasible only at states
$ -

EPer
"%� c + ;

Room 3

Room 1

Room 4

Room 2

Figure 2: Abstract MDP for a four-room example. Grey
circles mark peripheral states of the original MDP, i.e.
states of the abstract MDP.

�] "%$&� G��c � E + is given by the discounted transition
model for G��c , for any

$`-
EPer

"%� c + and E - XPer
"%� c + ;] "%$&� G��c � E +VL�� for any E �- XPer

"5� c + ;
� �] "%$&� G��c + is given by the discounted reward model forG��c , for any

$�-
EPer

"%� c + .
The transition and reward models required by the abstract
MDP are restricted to peripheral states and make no men-
tion of states “internal” to a region. Due to discounting in] these definitions do not describe an MDP, but they do
preserve the Markov property;3 thus, we may use dynamic
programming techniques to solve the abstract MDP. An
abstract MDP for a simple four-room navigation problem
is shown in Figure 2. Regions are formed by the rooms
and the peripheral states make up the abstract MDP. We as-
sume macros exist that can take the robot out of any room
through any door, accounting for the connectivity of the
abstract MDP.

Notice that the abstract MDP induced by a given decompo-
sition can be substantially smaller than the original MDP,
especially if the problem can be decomposed into a num-
ber of regions with relatively small peripheries—this is the
case in our running example, and in the types of domains
considered in [20, 21].

We call a policy G^] �M�] � �] for
�] that maps periph-

eral states to macro-actions a macro-policy. Such a policyG(] , when considered in the context of the original MDP
�

,
defines a non-Markovian policy G ; that is, the choice of
action at a state

$
can depend on previous history. In par-

ticular, the action G "5$N+ to be executed at some state
$�- � c

will generally depend on the state
$ � by which

� c was most
recently entered: G "%$*+ML G^] "%$ � + "%$*+ .4

3Specifically, the probability of moving from any entrance
state to an exit state for a given macro is independent of previ-
ous history.

4Note that the macro-policy does not dictate the actions to take
if the process begins in an internal state � of some region

� � . To
deal with this, we can use a greedy macro choice with regard to
the “intermediate macro models,” � � and
 � , and the values of
the abstract MDP at XPer � � ��� . This is required only for the initial
state, all other decisions are made at peripheral states in the ab-
stract MDP. Note that the greedy approach can be applied also to

Once a set of macros has been provided, along with their
models, our hierarchical approach induces a problem with
a considerably smaller state space (and often a smaller ac-
tion space). This computational advantage comes at a price
however—the possibility of generating a suboptimal pol-
icy. This is due to the fact that the abstract MDP allows
the decision maker to consider only a limited range of be-
haviors. Therefore it is important to ensure that the macros
provided (or generated) offer a choice of behaviors that are
of acceptable value. We will turn our attention to this issue
in Section 3.

2.5 Experimental results

To demonstrate the computational savings made possible
by our hierarchical approach to planning with macros, we
have performed experiments on the simple navigation prob-
lem in Figure 1. The agent can move in any compass di-
rection to an adjacent cell or stay in place. The move ac-
tions are stochastic, so the agent can move in an unintended
direction with some small probability. The objective is to
minimize the expected discounted cost incurred by navigat-
ing the maze, with each state, except the zero-cost absorb-
ing goal state, incurring some cost. The costs and transition
probabilities are not uniform across the maze.

We compared the results of value iteration for the original
MDP, the augmented MDP and the abstract MDP, the latter
two formed using the rooms in the problem as regions. The
macros were formed heuristically using the simple strategy
described in Section 3.2, giving � ����� C�"%� c + � P �

macros
for every region

� c . Figure 3 shows how the estimated
value (minimal expected cost) of a particular state improves
with the time (in seconds) taken by value iteration on each
of the three models. When the initial value function es-
timate is an upper bound, both the augmented MDP and
the abstract MDP lead to faster convergence of the value
function. In the augmented MDP, the ability of macros to
propagate value through a large number of states produces
large changes in the value function in a single iteration step,
overcoming the increased number of actions. Note, how-
ever, that when the initial estimate of the value function is a
lower bound, the augmented MDP actually performs worse
than the original MDP. These effects would be reversed if
we were maximizing rewards instead of minimizing costs.
The abstract MDP has significantly reduced state and ac-
tion spaces sizes. Although in general, macros can lead
to suboptimal value functions (and subsequently policies),
in our example, the abstract MDP produced nearly optimal
policies (and did so very quickly). The average time (in
seconds) taken per value iteration step in this example is��W ���
	

for the original MDP,
��Wf���

for the augmented MDP,
and

�:W,� ��
for the abstract MDP. This reflects the increased

action space of the augmented MDP and the reduced action

generate a markovian policy for all states in the region (see [10]
for details).

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

va
lu

e
fu

nc
tio

n

time

base level MDP
augmented MDP

abstract MDP

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

va
lu

e
fu

nc
tio

n

time

base level MDP
augmented MDP

abstract MDP

Figure 3: Solution quality versus time for various models. Results using a properly initialized value function (w.r.t. the
augmented MDP) are shown on the left. Results for a poor initial function are shown on the right. In the latter case, the
augmented MDP converges more slowly than the original MDP.

and state spaces for the abstract MDP, as expected.

3 Construction and Quality of a Macro Set

While macros can speed up computation, the question re-
mains just how good the resulting policies will be. In par-
ticular, within our hierarchical model, the space of policies
that can be considered is severely restricted. Thus, we wish
to ensure that the macros used admit the “flexibility” of be-
havior needed to discover good policies. The problem is
less pressing for augmented MDPs—since base actions are
available, optimality is assured—but still important if con-
vergence is to be enhanced.

A primary goal of a macro-selection strategy is to find a
small set of good macros, that is, macros that are likely
to produce, when combined, a good approximation of the
optimal solution.

3.1 Macro Generation using Peripheral Values

Suppose we offer the robot in our running example two
macros for possible execution in Room 1 of Figure 2, each
corresponding to a policy that attempts to leave the room by
one of the two exits. We are making an implict assumption
that one of these two behaviors is desirable, and thus that
there is no good reason to hang around in that room. We
may prescribe rather different local policies for the room
containing the goal; there is a reason not to leave the region.

This suggests a general way to automatically generate
macro actions for region

� c . We want to trade off the re-
wards associated with the states in

� c with the values of
leaving the region via some exit state. This tradeoff is
naturally modeled and analyzed as a local MDP where re-
wards are attached to states in

� c and estimated values are
attached to elements of its exit periphery.

Definition 5 Let
� c be a region of MDP

� L

α

Region

Periphery

Absorbing
State

σ: Exit

Figure 4: A Local MDP for Macro Generation

� ���!�#�!	
�7��
, and let �

�
XPer

"5� c + � IR be a seed func-
tion for

� c . The local MDP
� c " � + associated with

� c and �

consists of: (a) state space
� c � XPer

"%� c + � ��� � ; (b) actions,
dynamics and rewards associated with

� c as in
�

; (c) a
reward � "%$*+ associated with each

$ -
XPer

"5� c + ; and (d)
a single cost-free action applicable at each

$�-
XPer

"%� c +
that leads with certainty to

�
(a cost-free absorbing state).

The local MDP is depicted graphically in Figure 4. Solving� c " � + results in a local policy G c whose behavior is opti-
mal if the seed function � reflects the true value of reaching
specific exit states.

Intuitively, if we could seed the exit periphery of each local
MDP using a function � within � of the true value function
at these states, we could generate a single macro for each
region, and “string them together” to obtain an approxi-
mately optimal policy. More precisely, we have:

Theorem 1 Let
� L � � g �*)N)*)!�7� a � be a decomposition of

MDP
�

, and let
J

be the optimal value function for
�

.
Let � L � �N� c ��
 � p � be a set of macro actions such
that each

� c contains some macro G c generated by the
local MDP

� c " � c + where � � c "5$N+ � J "5$N+ � � � for all
$ -

XPer
"%� c + . If

�] is the abstract MDP induced by
�

using
action set � , and

J] is the optimal value function for
�] ,

then

� J] "%$*+� J "5$N+ � � � � B��� B
for all

$�-Y�] (the abstract state space). Furthermore, if
�

is a lower bound on the completion time of all macros, then

� J] "%$*+� J "%$*+ � � � � B ���� B � W

Note that more precise error bounds can be found when “ef-
fective” discounting rates are considered for every macro
transition.

3.2 Construction of Macro Sets

The previous result indicates that knowledge of the (op-
timal) value function for an MDP can give rise to good
macros. Of course, such prescience is rare: if we knew
the value function, we would have no decision problem to
solve. However, we often have heuristic knowledge regard-
ing the range of the value function at certain states, or con-
straints on its possible values. It is precisely this type of
knowledge that comes into play when one imposes partial
policies (say, in the form of a control routine). Even some
information can be used to construct a good set of macros
that guarantees approximately optimal performance. We
consider several methods for exploiting such knowledge.

If one knows the range of the value function, this can be
used to construct a set of macros systematically. For in-
stance, when constructing macros for Room 1 in Figure 2,
suppose our knowledge of the value function is sparse—all
we know is that the values of the two exit states lie be-
tween

J ����� and
J ����� .5 In order to generate a set of macros

for Room 1 that is guaranteed to contain a good macro,
we can use the coverage technique: intuitively, for each
of the two exit states, we consider values that lie in the
range

� J ����� � J ����� spaced some
�

apart; that is, we con-
sider a grid or mesh covering

� J ����� � J �����
	 . By construct-
ing macros for each � lying on a grid point, we are assured
that one such � is within

g	 � of the optimal value function
and that (assuming other regions have “good” macros from
which to choose) close-to-optimal behavior results when
the abstract MDP is solved.

This coverage technique can be extremely expensive: given
such generic knowledge of the value function, we will
generate

� " J ����� � J ����� +�� � +5 � ��� � ��� U����
macros per region.

However, we can often do much better. First, the number
of macros is usually smaller than the number of grid points
covering

� J ����� � J ����� . Thus it is often more appropriate
to search a local policy space. One technique for doing
so was suggested recently by Parr [18]. Second, we can
apply various forms of domain-specific knowledge. For in-
stance, the values of several exit states for a region

� c may

5Such bounds are easily obtainable using the maximum and
minimum rewards.

not be known, but we may know that these values are (ap-
proximately) the same (e.g., they are equidistant from any
rewarding or dangerous states). This effectively reduces
the dimensionality of the required grid. Tighter constraints
on the value function can reduce the range of values that
need to be tried. Furthermore, in circumstances where no
reward can be obtained within the region, only differences
in the relative values of exit states impact the local policy:
this too can reduce the number of macros needed.

The systematic coverage technique can lead to a genera-
tion of a large number of macros per region. Thus, unless
tight constraints are known on the value function, this can
involve substantial overhead and, in many instances, be un-
profitable. Heuristic methods for macro generation can al-
leviate this difficulty if they require the construction of a
small number of macros. One such strategy, suggested by
Sutton et al. [21] for robot navigation problems such as
our example, involves creating macros for each region

� c
that try to lead the agent out of

� c via different exit states.
To do so requires seeding a local MDP such that one exit
state gets high value and all others get low value. We de-
scribed experiments with this heuristic technique in the pre-
vious section, but we also added a stay-in-region macro that
keeps the agent in the region, by seeding all exit states with
low values. This technique leads to a set of �XPer

"%� c + � P[�
macros per region.

In general, the above heuristic strategy assures that exits
and potential goals within the region will not be overlooked
while planning at the abstract level. Note, however, that
this technique does not guarantee that the necessary cover-
age will be obtained. For example, while implementing a
policy to exit in one way, the agent may find itself actually
“slipping” closer to another exit due to uncertainty in its
actions. However, the policy will ensure the agent persists
in its attempt to leave as planned. If both exit states have
equal value, forcing the agent to choose one or the other can
be far from optimal. Instead, we would like to use a third
macro that takes the agent to the nearest exit. However, we
cannot discard the original macros unless we know in ad-
vance that the values are similar. In addition, unless one ac-
counts for potential variability in the actual value assigned
to an exit state, sound decisions to stay within a region or
leave it cannot be made.

Finally, we mention the possibility of using iterative refine-
ment techniques for macro construction. A simple refine-
ment strategy uses the value function produced by solv-
ing the abstract MDP as seeds for an entirely new set of
macros. In particular, we choose an initial set of seeds,
generate a single macro per region, then solve the induced
abstract MDP. The resulting value function is used as a seed
to generate a new set of macros (again one per region),
and the new abstract MDP is solved. This iterative macro-
refinement method is a special case of asynchronous policy
iteration [2] and is similar to Dantzig-Wolfe (D-W) decom-

position techniques [6, 14]. D-W techniques can be viewed
as iterative schemes for evaluating and modifying macro
sets generated by assigning values to peripheral states.

In general, iterative macro-refinement methods overcome
the threat of poor initial seeding (and the generation of poor
macros) by gradually improving the macro set using infor-
mation as it becomes available. These approaches require
the repeated construction of new macros, which may limit
their applicability. We leave deeper investigation of itera-
tive techniques for future work.

4 Multiple MDPs and the Reuse of Macros

4.1 Hybrid MDPs

As discussed above, generating macro-actions and con-
structing their transition and reward models is an intensive
process, requiring explicit state space enumeration. If a
large number of macros is generated, the overhead asso-
ciated with this process will outweigh any speed-up pro-
vided by macros during value iteration. Thus our hierar-
chical approach (or any approach requiring macro model
generation) may not be worthwhile as a technique to solve
a single MDP.

The main reason to incur the overhead of macro construc-
tion lies in the reuse of macros to solve multiple related
MDPs. In our running example, the robot may have con-
structed a policy that gets it to the goal consistently, but at
some point the goal location might change, or the penal-
ties associated with other locations may be revised, or per-
haps the environment (or its abilities) changes so that the
uncertainty associated with its moves at particular loca-
tions increases. Any of these changes requires the solution
of a new MDP, reflecting a change in reward structure or
change in system dynamics. However, the changes to the
MDP are often local: the reward function and the dynam-
ics remain the same in all but a few regions of state space.
For instance, it may be that the goal location moves within
Room 3, but no other part of the reward function changes.

Local changes in MDP structure can induce global changes
in the value function (and can induce dramatic qualitative
changes in the optimal behavior). If macros have been gen-
erated for a region such that they cover a set of different
behaviors, they can be applied and reused in solving these
revised MDPs. However, there is one impediment to the
application of macroactions to revised MDPs, namely, the
fact that revising an MDP requires that the local informa-
tion (rewards or dynamics) for some region must change.
In our example, the macros for most regions can be reused;
but those generated for Room 3 do not reflect the revisions
in reward or transition probabilities described above. One
possibility would be to generate new macros for revised
regions. However, this could lead to computational ineffi-
ciencies and delays as discussed earlier. Instead, it is often

Abstract
States

Base level
States

Expanded
Region

Figure 5: A Hybrid MDP

easier to solve revised MDPs using a hybrid MDP, contain-
ing both abstract and base level states.

Definition 6 Let
� L � � g �*)*)N)!��� a � be a decomposition of

MDP
� L ����������	
����

, and let
�] L � �] �!�] ��] �7�] be

the abstract MDP induced by
�

and macro set � L �N� c �
 � p � . Let
� L � ���!�#� 	8� ��

be a local revision of
�

with regard to region
� c ; that is,

	#"5$��!'(� E +VL 	#"%$&��'(� E + and�9"%$&��'H+9L �9"%$&�!':+
for all

$ �-�� c . The hybrid expansion��_ L3� � _ ��� _ �!	 _ �7� _
of
�] by

�
is:

� � _ L ��� C � "%�V+��� c ;
� � _ L � �N� � - � ��� �L
 � � � , where G��� - � � is

feasible only at states
$.-

EPer
"5� � + , and

'[-0�
is

feasible only at
� c ;

� 	 _ "%$&� G��� � E + is given by the discounted transition
model for G��� , for any

$`-
EPer

"%� � + and E - XPer
"%� � +

(
� �L

);
	 _ "%$&� G��� � E + L �

for any E �-
XPer

"%� � + ;	 _ "%$&��'(� E +VL 	#"5$��!'(� E + for any
$�-�� c and E - � _ ;

� � _ "%$&� G��� + is given by the discounted reward model forG �� for any
$ - � � "�� �L
5+

, while
� _ "%$&��'H+8L �9"5$��!'H+

for any
$`- � c .

Thus the hybrid MDP
�3_

, constructed when the structure
within region

� c changes, consists of the original abstract
MDP with the abstract states in EPer

"%� c + replaced by the
region

� c itself. This is depicted graphically in Figure 5.
We note that this expansion is easily defined for changes in
any number of regions.

While there may be substantial overhead in creating
macros, these can be reused to solve multiple problems,
thus amortizing the cost over a number of problem-solving
episodes. More importantly, the use of hybrid MDPs has
considerable advantages when real-time response is re-
quired to changing circumstances. Given a new MDP� � that differs from a base MDP

� A
in a single region� c (or, more generally, some small set of regions), this

new problem can be solved using a hybrid MDP of size� �] � P � � c � EPer
"%� c + � (recall

�] is the set of peripheral
states, or states in the abstract MDP). For example, if an
MDP is partitioned into � regions of roughly uniform size,

MAZE 121MAZE 66MAZE 36

Figure 6: Problems used to test the benefits of macro-reuse.
Circles denote peripheral states assumed by the hybrid-
MDP method.

and the average size of the entrance periphery of any re-
gion is � , then a hybrid MDP with one expanded region has
roughly � � P U

� states. Without the use of macros and ab-
stract/hybrid MDPs, the solution of a new problem requires
value or policy iteration over the entire state space of size� � � . Thus a new problem can be solved much more quickly.
The off-line generation of macros can lead to very efficient
on-line solution of new problem instances.

4.2 Experimental results

To illustrate the potential for speed-up in on-line response
time for multiple related MDPs using macro actions and
our hybrid MDP model, we compared response time of
value iteration for both the base level MDP and the hybrid
MDP on three sequences of related problems. We exam-
ined three robot navigation problems of increasing com-
plexity, shown in Figure 6: Maze 36 with 36 states and 4 re-
gions; Maze66 with 66 states and 7 regions; and Maze 121
with 121 states and 11 regions. In each instance, the un-
derlying MDP was modified locally by changing the goal,
represented by a zero cost absorbing state (this required
changes to both the dynamics and reward model).

Table 1 summarizes results obtained for 25 problem in-
stances (using different randomly selected goal states) and
two value iteration methods working with the base level
MDP and the hybrid MDP. A heuristic set of macro-actions,
described in Section 3.2, was used for the hybrid MDP.
Value iteration was started using the solution obtained for
the original (locally unmodified) MDP and stopped when a
fixed precision (0.01 cost units) was achieved.

The results illustrate that the hybrid MDP model, given
suitable macros, can solve new problem instances much
more quickly than resolving the MDP with the original
state and action spaces. We also see that the savings offered
by the hybrid model are greater for larger problems, exactly
as expected. This is due to the fact that local changes affect
a significantly smaller proportionof the original model. For
a hybrid MDP this means that most of the structure of the
abstract MDP is preserved and only the regions in which
the change has occured are elaborated.

A disadvantage of the hybrid MDP framework is that one
has to generate and precompute a set of macros, which can
be computationally very costly.6 However, if the macro
construction process is performed in advance (off-line), this
delay may be unimportant in relation to the improved abil-
ity to solve new problem instances quickly. Alternatively,
the delay can be justified when the computational cost
could be amortized over multiple problem instances. For
example, based on our test results, the hybrid MDP method
in this example would start to dominate (in terms of a total
solution time, which counts both the delay and time to solvep tasks) after 22, 23, and 24 tasks are solved for Maze 36,
Maze 66, and Maze 121, respectively. Notice that amor-
tization threshold (the number of tasks after which macro
preparation “pays off”) increases slowly with problem size,
even though this sequence of problems is such that a more
complex maze has roughly double the state space size of
its predecessor. This trend seems promising for the appli-
cation of macros in very large domains with many possible
tasks or goals.

The hybrid MDPs used in our experiments rely on a set
of heuristically generated macros (see Section 3.2). The
macro set is relatively small and performed very well on
the set of maze navigation problems we tested. This is
documented by comparing AEC scores, measuring aver-
age expected cost for all peripheral states and for 25 ran-
domly generated goal tasks. The increase in the cost score
for larger problems is caused by an increase in distances
between peripheral and possible goal states. The practical
creation of good macro sets for different types of problems
remains an interesting open issue.

5 Conclusions

We have proposed a new hierarchical model for solving
MDPs using macro actions. Our abstract MDP allows po-
tentially dramatic reductions in the size of state and ac-
tion spaces. This requires commitment to the execution
of macro actions—they cannot be reconsidered at each
stage—thus leading to potentially inflexible, suboptimal
behavior. We have elaborated conditions and macro con-
struction techniques that provide guarantees on solution
quality. Within this model, anytime tradeoffs can be made
rather easily. Furthermore, with hybrid MDPs, we have a
technique that allows macros to be reused to solve multiple
MDPs, providing for fast, on-line decision making, and al-
lowing macro construction costs to be amortized over many
problem solving episodes.

There are a number of questions and open issues that re-
main to be addressed within this framework and many in-
teresting directions in which this work can be extended. We
have ignored the question of where partitionings of state

6We note that approximation techniques can be used to allevi-
ate this problem.

Maze 36 Maze 66 Maze 121
delay av.time AEC delay av.time AEC delay av.time AEC

base MDP 0 1.22 5.96 0 2.61 8.55 0 5.94 9.96
hybrid MDP 5.52 0.96 6.01 12.62 2.04 9.73 24.47 4.89 10.72

Table 1: Results obtained by base and hybrid MDP methods on 25 randomly selected goals and three navigation problems.
The delay (in seconds) measures the time spent to prepare macroactions, av. time is the average time (in seconds) to
converge to a solution of required precision (0.01), AEC measures the solution quality, and is computed by averaging
expected cost over all peripheral states and task instances.

space come from: apart from handcrafted decompositions,
one can imagine several strategies for automatic decompo-
sition. However, there are several dimensions along which
partitionings can be compared: larger regions often lead to
smaller peripheries, which result in smaller abstract MDPs
(which in turn can be solved more readily), and increase
the odds that a revision of the MDP will be localized to a
small number of regions; smaller regions, in contrast, al-
low macros to be generated more quickly when revisions
are required and often lead to smaller hybrid MDPs (fewer
base states are added to the expanded MDP). These trade-
offs need to be addressed in a systematic fashion.

Other interesting questions surround the use of concise
MDP representations (e.g., Bayes nets) to form decomposi-
tions and to solve local, abstract and hybrid MDPs. Related
is the need to concisely represent macros and macro models
without explicit enumeration of the state space.

The reuse of macros naturally suggests an extension of the
analysis provided here, and the questions posed above, to
deal with known distributions over problem instances. If
we have information pertaining to the ways in which sys-
tem dynamics and reward functions may be revised, we
would like to exploit it in forming our decomposition of
state space and the macros one provides.

Acknowledgements
We would like to thank Ronald Parr for a motivating discussion
on macro-actions and for pointing out additional references. This
work was supported in part by DARPA/Rome Labs Planning Ini-
tiative grant F30602-95-1-0020 and in parts by NSF grants IRI-
9453383 and IRI-9312395. Craig Boutilier was supported by
NSERC Research Grant OGP0121843 and IRIS-II Project IC-7,
and this work was undertaken while the author was visiting Brown
University. Thanks also to the generous support of the Killam
Foundation.

References

[1] R. E. Bellman. Dynamic Programming. Princeton Univer-
sity Press, Princeton, 1957.

[2] D. P. Bertsekas and J.. N. Tsitsiklis. Neuro-dynamic Pro-
gramming. Athena, 1996.

[3] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting
structure in policy construction. IJCAI-95, pp.1104–1111,
Montreal, 1995.

[4] T. Dean and R. Givan. Model minimization in Markov de-
cision processes. AAAI-97, pp.106–111, Providence, 1997.

[5] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. Plan-
ning under time constraints in stochastic domains. Artif. In-
tell., 76:35–74, 1995.

[6] T. Dean and S.-H. Lin. Decomposition techniques for plan-
ning in stochastic domains. IJCAI-95, pp.1121–1127, Mon-
treal, 1995.

[7] R. Dearden and C. Boutilier. Abstraction and approximate
decision theoretic planning. Artif. Intell., 89:219–283, 1997.

[8] R. Fikes, P. Hart, and N. Nilsson. Learning and executing
generalized robot plans. Artif. Intell., 3:251–288, 1972.

[9] J. P. Forestier, P. Varaiya. Multilayer control of large Markov
chains. IEEE Trans. on Aut. Control, 23:298-304, 1978.

[10] M. Hauskrecht. Planning with temporally abstract actions.
Technical report, CS-98-01, Brown University, Providence,
1998.

[11] R. A. Howard. Dynamic Programming and Markov Pro-
cesses. MIT Press, 1960.

[12] L. Pack Kaelbling. Hierarchical reinforcement learning:
Preliminary results. ICML-93, pp.167–173, Amherst, 1993.

[13] R. Korf. Macro-operators: A weak method for learning.
Artif. Intell., 26:35–77, 1985.

[14] H. J. Kushner and C.-H. Chen. Decomposition of systems
governed by Markov chains. IEEE Trans. Automatic Con-
trol, 19(5):501–507, 1974.

[15] J. E. Laird, A. Newell, P. S. Rosenbloom. SOAR: An archi-
tecture for general intelligence. Art. Intell., 33:1–64, 1987.

[16] S. Minton. Selectively generalizing plans for problem solv-
ing. IJCAI-85, pp.596–599, Boston, 1985.

[17] R. Parr and S. Russell. Reinforcement learning with hier-
archies of machines. In M. Mozer, M. Jordan, T. Petsche,
eds., NIPS-11. MIT Press, 1998.

[18] R. Parr. Flexible Decomposition Algorithms for Weakly
Coupled Markov Decision Processes. In this proceedings,
1998.

[19] R. Parr. Hierarchical control and learning with hierarchies
of machines. Chapters 1-3, under preparation, 1998.

[20] D. Precup and R. S. Sutton. Multi-time models for tem-
porally abstract planning. In M. Mozer, M. Jordan, and T.
Petsche, eds., NIPS-11. MIT Press, 1998.

[21] D. Precup, R. S. Sutton, and S. Singh. Theoretical results on
reinforcement learning with temporally abstract behaviors.
10th Eur. Conf. Mach. Learn., Chemnitz, 1998.

[22] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, 1994.

[23] R. S. Sutton. TD models: Modeling the world at a mixture
of time scales. In ICML-95, pp.531–539, Lake Tahoe, 1995.

[24] S. Thrun and A. Schwartz. Finding structure in reinforce-
ment learning. In G. Tesauro, D. Touretzky, and T. Leen,
eds., NIPS-7, pp.385–392, MIT Press, 1995.

